
N A S A  TN D-2666- 

e /  
L 

-_I 

NASA TECHNICAL NOTE 

-4 
- 8  
- ” .  - 

I -= - *  

FREE VIBRATIONS OF 
CONICAL SHELLS 

by William c b  Lb H a  

Prepared under Contract No. NASr-94(06) by 
SOUTHWEST RESEARCH INSTITUTE 
San Antonio, Texas 

for 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D. C. FEBRUARY 1 9 6 5  

b 



TECH LIBRARY KAFB, NM 

I Illill 11111 11111 lllll 11111 lull 11111 Ill1 Ill __ _. 

0079773 

FREE VIBRATIONS OF CONICAL SHELLS 

By William C.  L. Hu 

Distribution of this repor t  is provided in the interest  of 
information exchange. Responsibility for the contents 
res ides  in the author o r  organization that prepared i t .  

Prepared  under Contract No. NASr -94 (06) by 
SOUTHWEST RESEARCH INSTITUTE 

San Antonio, Texas 

for  

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 

For sole by the Off ice of Technica l  Services, Deportment of Commerce, 
Washington, D.C. 20230 -- Price $3.00 





TABLE O F  CONTENTS 

LIST O F  ILLUSTRATIONS 

SYMBOLS 

SUMMARY 

INTRODUCTION 

ANALYSIS 

Matr ix  F o r m  of Governing Differential Equations 

Calculations of Frequencies  and Modes 

Clamped edges 

Simply supported edges with axial constraint  

Simply supported edges without meridional  constraint  

Simply supported edges without c i rcumferent ia l  shear ing 
constraint  

F r e e  edges 

Transve r se  Shear  Theory fo r  Short  Shells 

Bending Theory 

Membrane Solutions 

NUMERICAL RESULTS AND DISCUSSION 

CONCLUSIONS 

APPENDIX I 

APPENDIX I1 

Page 

i v  

V 

1 

1 

3 

3 

13 

1 3  

1 5  

16  

16 

17 

1 7  

20 

2 2  

26  

31  

39  

45 

REFERENCES 

iii 

47 



LIST O F  ILLUSTRATIONS 

Figure  

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Geometry of Middle Surface of Conical Shell  

S t r e s s e s  and  Deformation of a Differential Element  

Variation of Frequency with Respect  to Semiver tex  
Angle a for  F r e e - F r e e  Conical Shell  with s z / s 1  = 2 . 0 ,  
n = O  

Page  

4 

5 

29  

Variation of Frequency with Respec t  to Semiver tex  
Angle a for  F r e e - F r e e  Conical Shell  with s 2 / s l  = 4.0 ,  
n = O  30 

Variation of Frequency with Respec t  to Completeness  
P a r a m e t e r  s 2 / s 1  f o r  F r e e - F r e e  Conical Shell  with 
a = 15",  n = 0 33 

Influence of Meridional S t r e s s  Resultant Ns on T r a n s -  
v e r s e  Modes of Axisymmetr ic  Vibrations of F r e e - F r e e  
Conical Shells 34 

Mode .Functions of F r e e - F r e e  Conical Shell  with 
a = 15", s 2 / s 1  = 1 . 7 5 ,  n = O  

Mode Functions of F r e e - F r e e  Conical Shell  with 
a = 45",  s 2 / s 1  = 2.0,  n = 0 

Mode Functions of F r e e - F r e e  Conical Shell  with 
a = 15" ,  s z / s 1  = 3 . 0 ,  n = 0 

Mode Functions of F r e e - F r e e  Conical Shell  with 
a = 15",  s 2 / s 1  = 4 . 0 ,  n = 0 

35 

36 

37 

38 

iv 



SYMBOLS 

S distance along meridian,  m e a s u r e d  f rom apex 
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C = E h / (  1 - v ) ,  extensional modulus 
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Qs, Qe 

s t r e s s  couple resul tants  
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FREE VIBRATIONS O F  CONICAL SHELLS 

By W i l l i a m  C. L. Hu 

Southwe s t  Resea rch  Institute 

SUMMARY 

A method is presented for  calculating the natural  frequencies and a s s o -  
ciated modes of ax isymmetr ic  and nonsymmetr ic  vibrations of truncated con- 
ica l  shel ls .  The effects of t r ansve r se  shea r  deformation and rotatory iner t ia  
a r e  included in the formulation. The determination of the natural  frequencies 
and mode functions i s  reduced to the calculation of eigenvalues and associated 
eigenvectors of a coefficient matr ix ,  whose s ize  depends on the number of 
t e r m s  retained in the Four i e r  expansions of the mode functions. 
examples a r e  given to i l lustrate  the calculation procedure.  
brations of f r e e - f r e e  conical she l l s  a r e  investigated based on a f ive- te rm 
truncation of the Four i e r  s e r i e s  of the mode functions, with special  emphasis  
on the variation of the frequency spec t rum with respec t  to the semiver tex  
angle and the completeness pa rame te r  of the conical shell .  

Numerical  
Axisymmetr ic  v i -  

INTRODUCTION 

In recent  years ,  a grea t  amount of effort  has  been exerted by many in-  
vest igators  to determine the natural  frequencies and mode shapes of truncated 
conical shells with various boundary conditions. 
(Ref. 1) indicated that, due to  the difficulty of analytic t reatment  of the prob-  
lem,  most  investigators had to employ energy methods with simple assumed 
mode functions (Refs .  2-8) ,  while some o thers  r e so r t ed  to numerical  integra-  
tion (Refs.  9-12) wh ich i s l e s s  efficient i n  solving eigenvalue problems than in  
solving init ial  value problems.  Among p r i o r  investigations, Federhofer  
(Ref. 2 )  and Saunders,  Wisniewski and Pas l ay  (Ref. 6 )  used t runcated power 
s e r i e s  o r  polynomials as assumed mode functions, while Grigolyuk (Ref. 3 )  
and Herrmann and Mirsky (Ref. 4)  used t r igonometr ic  functions a s  assumed 
mode shapes,  then calculated the frequencies by a Rayleigh-Ritz procedure.  
Shulman (Ref. 5 )  studied seve ra l  approximate approaches and made an  exten- 
sive comparison of the numerical  resul ts ,  which revealed a wide discrepancy 
between different methods.  
sion i n  a Rayleigh-Ritz procedure but neglected the effects of longitudinal 

A review of the l i t e r a tu re  

Seide (Ref. 7 )  used a Donne11 type energy expres -  
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iner t ia  in  his kinetic energy expression.  
infinite s e r i e s  and calculated the natural  f requencies  by solving the truncated 
determinantal  equation. He r emarked  that t he re  appear  to be no general iza-  
t ions that can be made for  simplifying the calculation of the en t i re  frequency 
spectrum. In a recent  paper ,  Garnet  and Kempner  (Ref. 8 )  studied the axi- 
symmet r i c  vibrations of conical shells by a Rayleigh-Ritz procedure which 
incorporated the effects of t r ansve r se  shea r  deformation and rotatory iner t ia .  
As i n  many other  papers ,  the i r  numerical  analysis  has  to be based on a one- 
o r  two-term truncation of the s e r i e s  expansion of the mode functions, which is, 
in  general ,  too crude to be consistent with the i r  overaccurate  energy expres  - 
sions and s t r a in  expressions.  

He expanded the mode functions into 

In contrast  to the Rayleigh-Ritz approaches,  Goldberg, Bogdanoff and 

They converted the governing equations 
Marcus (Ref. 9 )  solved the axisymmetr ic  vibrations of t runcated conical shells 
by a numerical  integration process .  
into a sys tem of s ix  f i r s t -o rde r  differential  equations which contain the un- 
known frequency in  the i r  coefficients, and determined the natural  frequencies 
by t r i a l  and e r r o r .  In a l a t e r  paper,  Goldberg, Bogdanoff and Alspaugh (Ref. 
10 )  extended the technique to the case  of nonsymmetr ic  vibrations of conical 
shel ls ,  in  which the numerical  integration of an  eighth-order s e t  of twelve 
equations has  to be c a r r i e d  out five t imes  for each t r i a l  value of frequency, and 
the calculations a r e  repeated until all the boundary conditions can be satisfied 
with des i red  accuracy.  Recently Kalnins (Refs .  11, 12) developed a m o r e  gen- 
e r a l  numerical  integration procedure which enables one to calculate the natural  
frequencies and mode shapes of an a r b i t r a r y o r  multisegmental  shell  of revol-  
ution. Since considerable amount of computer t ime  i s  required to  calculate 
each natural  frequency and mode of a given shel l  by numer ica l  integration p r o -  
cess ,  i t  appears  unfeasible to apply these methods (Refs. 9 -12)  to  probe the 
frequency spec t ra  of t runcated conical shells with different conicity and com- 
pleteness pa rame te r .  

In the present  paper,  a method consisting of an opera tor -mat r ix  tech-  
nique and a Galerkin procedure i s  presented for  the investigation of f r ee  v ibra-  
tions of truncated conical shells with both edges f ree ,  clamped, o r  simply sup-  
ported. 
included in the formulation, and approximate theories ,  not including t r ans  - 
verse  shea r  and rotatory iner t ia  o r  fur ther  neglecting the bending effects, a r e  
derived theref rom.  The essence  of this method i s  that the determination of 
natural  f requencies  and mode shapes i s  reduced to the calculation of the eigen- 
values and eigenvectors of some coefficient mat r ix ,  which can be efficiently 
performed on a digital computer and involves no t r i a l  and e r r o r .  The s ize  of 
the ma t r ix  depends on the number of t e r m s  retained in  the Four i e r  expansions 
of the mode functions. 
capacity, it is not difficult to re ta in  five to ten t e r m s  in these s e r i e s .  

The effects of t r ansve r se  shear  deformation and rotatory iner t ia  a r e  

With the help of a computer having adequate s torage 
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F o r  the purpose of i l lustrating the use  of the method given in this 
paper,  numerical  calculations a r e  ca r r i ed  out, based on the approximate 
theory for  very thin conical shel ls  for  which the bending effects a r e  negligible. 
The variation of the natural  frequencies of ax isymmetr ic  vibrations with 
respec t  to the conicity and the completeness pa rame te r  i s  investigated by a 
f ive- te rm truncation of the Four i e r  s e r i e s  of the mode functions. 

The author wishes to  acknowledge his appreciation to Dr .  U. S .  
Lindholm and Dr.  W .  H. Chu for valuable comments and helpful discussions,  
and also Mr. R .  Gonzales for  his  ass i s tance  in  the numerical  computations. 

ANALYSIS 

Matrix F o r m  of Governing Differential Equations 

Refer red  to the curvi l inear  coordinate sys tem s and 8 on the middle 
surface of the conical shel l  ( F i g .  l ) ,  the five equations of motion of the shel l  
element (Fig.  2 )  which include the effects of t r ansve r se  shear  and rotatory 
iner t ia  a r e  

- - - -  -+-t - p h -  
S a t 2  a s  s s s in  a 80 

a 2v 

a t 2  
= ph- 

2Nse i 8 %  Qe 
t---- 

%e 
a s  S s s in  a a e  ' s tan a 

Ne t- a Q s  +-t Qs = ph2 a 2w 
a t  s tan a a s  s s s in  a 80 

The s t r e s s  - s t r a in  re lat ions of thin e las t ic  shel ls  which incorporate  
t r ansve r se  shear  deformation have been der ived by a number of authors  using 
various approaches.  The following f o r m  of the s t r e s s  - s t ra in  relations,  which 
will be used in  this  paper ,  is based on those given by Naghdi (Ref. 13) 
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FIGURE I .  GEOMETRY O F  MIDDLE SURFACE O F  CONICAL SHELL 
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( a )  STRESS RESULTANTS AF D DISPLACEMENTS 

I67 

( b )  STRESS COUPLE RESULTANTS AND ROTATIONS 

'FIGURE 2. STRESSES AND DEFORMATION O F  
A DIFFERENTIAL ELEMENT 

5 



( somet imes  r e f e r r e d  to a s  Reissner-Naghdi 's  theory).  
approximation s imi l a r  t o  one used by Naghdi and Cooper (Ref. 14) in  the i r  
study of cylindrical  shel ls  (System 11, Ref. 14), these relations for  conical 
shells a r e  

By introducing an  

" 1  NS = c [ E + v ( s  s i n a  a 0  --+--I- s s t a n  a 
1 a v  

~0 = c [ s  s in  a a e  s s tan W a f v p] S 
a v  - + - t  

1 

1 - ape t - t v - ]  ps P S  

~6 = ~ [ s  s in  a a e  s a s  

Qs = K -  2 

3 2 where C = E h / ( l  - v ), D = E h  / 1 2 ( 1  - v ), and K i s  a shear  coefficient 
which has  the value in  Reference 13 as a consequence of the consistent 
assumptions for  s t r e s s e s  and displacements.  Slightly different values of K 

have been obtained by other authors through different considerations:::, but the 

5 /6  

:kFor example, in  the i r  studies of cylindrical  shel ls ,  Herrmann and Mirsky 
(Ref. 15) have used K = 0.86 and l a t e r  (Ref. 16) 
(Ref. 17) have used 8 / 9 .  

n2/12, Lin and Morgan 
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effects of this difference a r e  believed to be very  smal l  for  all pract ical  p u r -  
poses .  I t  should be noted that, when the effects of rotatory inertia and t r a n s -  
ve r se  shear  deformation a r e  neglected, the sys t em of governing equations , 
(1)  and ( 2 ) ,  reduces to  that of the c lass ica l  bending theory (R-ef. 18). If the 
t e r m  Q,/(s tan a )  in ( l b )  i s  fur ther  neglected, it reduces to  the Donne11 
type theory a s  given by Seide (Ref. 19). 

To satisfy the periodical property i n  the circumferent ia l  direction, 
the thir teen var iables  in  (1 )  and ( 2 )  a r e  assumed to be separable  in the 
form:  

U 

W 

PS 

NS 

Ne 
MS 
Me 
QS 

au r n 

i ( 1 
J 

s in (ne  + e o )  cos ut ,  

where w i s  a natural  frequency, n an  integer represent ing the c i r cum-  
ferent ia l  wave number,  and -9, a phase angle which i s  introduced for the con- 
venience of discussion for n = 0. 
length a = s2 s in  a (the radius  of the ma jo r  base) ,  the mode functions with 
subscr ipt  n a r e  dimensionless quantities. 

Note that a s  a resu l t  of using the reference 

Substitution of (3 )  into (1)  and ( 2 )  resu l t s  in 

- wZp(1 - v 2 ) a  
un - -~ Nsn nNsen + - -  dNs n 

ds S s s in  a s E 
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- 

sn  nMsen M dMsn + - -  - ds S s sin a 

E 
sn  

S s s in  a 

Q 
t-- 

nvn un 
t-t 

dun 
Nsn = a -  d s  t v a ( - s  s in  a s s tan a 

navn aun awn dun 
t va - s + s  tan a ds t- Nen = - s s in  a 

dPsn nPe n 
s sin a S 

Msn = a- t va (- d s  

- -  - sin a Msen - 2 npsn 

dpsn 
t va-  

anpen apsn 
MOn - t- 

s sin a s ds 

anwn ~ ( 1  - v )  12a 
Qen = 2 $( s sin a + 

The thir teen differential  equations (4)  and ( 5 )  contain thir teen 
unknowns but involve only ten of their  first derivatives,  since the first 
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derivatives of the th ree  var iables  Nsn, Msn, and Qsn do not appear.  
Therefore ,  the sys t em i s  of tenth o r d e r ,  and requi res  five appropriate  bound- 
a r y  conditions at  each edge to ensure  the problem completely determinate .  

Introducing the well-known coordinate t ransformation for  conical 
shel ls ,  

and noting that the interval  s 1  s 4 s 2  is t ransformed to 0 < x 4 L, with 

L = log(?) = log(;) 

we can wri te  the equations of motion, (4), in the ma t r ix  form:  

F 

Nsn 

Nsen 

Nen 

Msn 

Msen 

Men 

QSn 

Qen - 

un 

vn 

wn 

Ps n 

Pe n 

c 

( 7 )  

where S2 is the dimensionless natural  frequency pa rame te r  (hereaf te r  
simply r e f e r r e d  to a s  frequency when no confusion will a r i s e ) .  

and F i s  the ( 5  X 8)  opera tor  mat r ix :  
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F = ex s in  a 

n 
s in  a 

00-2  

0 

0 

0 

1 

-n 
s in  a 

cot a 0 

0 0 0 0 

0 0 0 - E  cot a 

‘n 
0 ‘(D- 1 )  ~ s in  a 0 

0 
e -x 

sin a 
1 

n 
s in  a 0 B-1 ~ 

-X -n e 
0 0 - 2  - 0 -  

s in  a sin a 0 0 

2 in  which fi = d/dx  i s  the differential  opera tor  and 
ness  pa rame te r .  Similar ly ,  the s t r e s s  - s t r a in  relations ( 5 )  a r e  t ransformed 
to the ma t r ix  form:  

E = h /12aZ the thick- 

Nsn  

Nsen 

Ne n 

Msn 

Msen 

Men 

QSl-l 

Qon 

un 

vn 

wn 

Psn 

Po n 

1 0  



where K i s  the (8  X 5)  opera tor  mat r ix :  

X K = e s i n a  

un 
s in  a -/st v 

1 - u  - -(Dt 1)  1 - u  n -- 
2 s in  a 2 

n 
s in  a 

- v D t l  -- 

0 0 

0 0 

0 0 

0 0 

0 0 

u cot a 

0 

cot a 

0 

0 

0 

k S  
- - O D  

ks n 

E 

-- 
E s in  a 

in which ks = ~ ( 1  - ~ ) / 2 .  

Let N denote the s t r e s s  column vector :  

and U denote the displacement 

u = {UnVnWnPsnPen) 

then, f rom the ma t r ix  equations 
N or U to get 

column vector  

0 

0 

0 

1 - u  n -- 
2 s in  a 

- v a t  1 

-X ks e -~ 
E sin a 

0 

0 

0 

0 

un 
s in  a 

- -  

n 
s in  a 

-- 

0 

ks e-x ____ 
E s in  a 

(8)  and ( l l ) ,  we can eliminate either 

HU = Q2U (13)  
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o r  

2 J N =  Q N  

where H is the ( 5  X 5) operator  matr ix  

H = F K  

and J i s  the (8  X 8)  opera tor  ma t r ix  

J = K F  

To simplify the multiplication of two opera tor  ma t r i ces ,  we observe 
the following ru les  f r o m  operator  calculus: 

( 1 )  Let P (d) be any polynomial of the differential operator  
d =  d/dx, then the operator  .ex obeys the shifting rule  

and, i n  general ,  for  any constant c, 

This rule  a l so  applies to  operator  m a t r i c e s  whose elements  
contain polynomials of fl . 
and [ Q ' ( d ) ]  a r e  two such opera tor  ma t r i ces ,  we have 

Thus,  for  example,  i f  [Q (&)I 

( 2 )  Let c and c '  be a r b i t r a r y  constants, then 

( J t  c ) ( f l t  c ' )  = D 2  t ( c  t d ) D t  ccl 

With the help of these  rules ,  we can easi ly  calculate the two operator  
ma t r i ces  H and J:  

H = [Hij] , i , j  1 , 2  , . . . ,  5 

and 

J = [Jij] , i , j  = 1 , 2 , 3  ,..., 8 

The opera tors  Hij and J i j  a r e  given in Appendix 1. 

12  
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The remaining procedures  of solution of the vibration problem depend 
on the boundary conditions p re sc r ibed  a t  the two c i rcu lar  edges,  i. e . ,  at  
x = 0, L. (14) i s  the m o r e  convenient fo rm for f r ee - f r ee  
conical shel ls ,  while (13)  is be t te r  suited for  conical shel ls  with both edges 
clamped o r  simply supported. 
tions a r e  considered separately.  

I t  will be seen  that 

In the following a few important edge condi- 

Calculations of Frequencies  and Modes 

Clamped edges.  - When the t runcated conical shel l  is clamped at both 
edges, the boundary conditions a r e ,  at  x = 0, L, 

Therefore ,  the five mode functions can be expanded into sine se r i e s ,  every  
t e r m  of which sat isf ies  the boundary conditions independently. 
tion, they a r e  

After t runca-  

m ITX 
un = 1 am sin- L 

m = l  

m ITX 
Vn = 1 b, sin- L 

M2 

m = l  

m ITX 
wn = 1 c m s i n -  L 

M3 

m = l  

MA 
m ITX Psn = 1 dm sin- L 

m ITX 
Pen = 1 em s in  - L 

m =  1 

where 
t e r m s  t o  be retained i n  the se r i e s ,  and which may  be taken equal t o  each other.  
Denoting M = M i  + M2 + M3 + M4 + M5, the re  a r e  M undetermined constants 
in the problem besides the unknown frequency. 

M i ,  * . .  , M5 a r e  properly chosen in tegers  represent ing the number of 

13 



We assume  that the Four i e r  expansions of the five mode functions a r e  
te rmwise  differentiable twice. :k Substitition of (15)  into (13) resu l t s  in  five 
equations containing the M coefficients. The f i r s t  equation, for  example, 
can be wri t ten a s :  

M2 M3 1 a m ( H l 1 s i n d )  f 1 b m ( H 1 2 s i n -  mTx) L f 1 L 
m r x  M1 

m =  1 m =  1 m =  1 

M A  M, M. 
k T T ~  

L 
k = l  

where the opera tors  HIJ ,  j = 1, 2, . . . , 5, are ,  a s  given in Appendix I, 

3 - v )  2 
H 12 = -e 2x n s i n a ( + D + -  

H13 = e2x s in  a cos a ( v D t  1 )  

k TTX 
To apply the Galerkin method, we multiply (16)  by s in  T, , - 

k = 1, 2, o.. , MI, then integrate over the interval  
M1 equations: 

0 4 x < L. This  gives 

13 - 2 
M1 M2 M3 

l 1  t 1 b m H r m +  2 cmHkm - L? akJ k = l , 2 , . . . , M 1 '  
m =  1 m =  1 

1 amHkm 
m =  1 

:gLet f (x) be a smooth, single-valued function of x in  the interval 
0 4  x,< L, then i t s  Four i e r  sine expansion i s  usually t e rmwise  differentiable 
twice i f  f ( 0 )  = f (L)  = 0, and i t s  Four i e r  cosine expansion i s  usually te rmwise  
differentiable twice i f  f '  ( 0 )  = f '  (L)  = 0. 

14 



where 

H1j  = L J ~  s in  - kTx ( H l j  s in  - 
0 

) dx, j = 1, 2, 3.. 
m m  

L L k m  L 

Note Hkm '* 
applying the same  procedure to all five equations in  (13), we get M alge - 
bra ic  equations for the M coefficients, which can be put in the m a t r i x  form 

and Hkm l 5  a r e  dropped because they a r e  identically zero .  By 

. .  
It i s  important to note that, for  conical shells,  the coefficients 
integrated in closed fo rm.  Equation (17) i s  a s tandard f o r m  of matrix eigen- 
value problem. 
(M X M) mat r ix  [€4$jm] , which can be readily calculated on a digital computer,  
give the frequencies  and corresponding mode shapes.  

HZm can be 

The eigenvalues and corresponding eigenvectors of the 

Simply supported edges with axial  constraint .  - The t e r m  simple sup- 
When i t  i s  applied to port  i s  originated f r o m  the theory of beams and plates .  

shells,  ambiguity may eas i ly  a r i s e  in concern with axial  constraint .  If the 
supports a r e  provided by attaching light but very  rigid rings to  the edges,  then 
no appreciable axial  constraint  ex is t s  for  the cases  n = 0 and n = 1 (neg-  
lecting the iner t ia  of the r ings) ,  while considerable axial constraint  will exis t  
f o r  n > ,  2 .  F o r  the case  with complete axial  constraint ,  the boundary condi- 
t ions a r e ,  at  x = 0, L, 

F r o m  (1 1)  and (12), the condition Msn = 0 can be replaced by  

- vpsn = 0 ,  at x = 0, L dpsn 
dx 
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Therefore ,  to  satisfy all the boundary conditions t e r m  by t e r m ,  un, vn, wn, 
and Pen a r e  expanded into sine s e r i e s  a s  before,  while Psn must  be expanded 
into cosine s e r i e s  which, af ter  truncation, is 

1 dm C O S T  

M4 

m = l  
Psn 

By applying the same  Galerkin procedure as in  the clamped-clamped case,  we 
can obtain an  ( M  t 1)  by ( M  t I )  coefficient mat r ix ,  whose eigenvalues and 
eigenvectors give the frequencies and mode functions of the simply supported 
conical shell .  
Bsn = e-VXpsn, and t ransforming (17) accordingly.  If the Po i s son ' s  effect on 
boundary conditions i s  neglected, the factor  e v x  in (19) may  be dropped. 

The calculation cau be simplified by using a new variable  

Simply supported __ edges _ ~ _ _ _ _ _ ~ _ _  without mer.idiona1 - . constraint .  - If the r e -  
s t ra in t  on meridional displacements at  the two c i r cu la r  edges is' completely 
re leased ,  the boundary conditions un = 0 in  (18) should be replaced by 
Nsn = 0, at x = 0, L. F r o m  (11) and (12) , these conditions can be wri t ten 

- - vun = 0 ,  a t  x = 0, L 
dun 
dx 

Therefore ,  in  addition to taking (19) for  Psn, un should be taken as 

M1 
un = evx[:t 1 am cos L 

m =  1 

By applying the s a m e  Galerkin procedure,  we can obtain an ( M  t 2 )  by 
(M t 2)  coefficient mat r ix .  
var iable  Un = e-VXun, and t ransforming (17) accordingly. If the 
Poisson ' s  effect on boundary conditions i s  neglected, the factor  e v x  above 
may also be dropped. 

The calculation can be simplified by using a new 

Simply supported edges without c i rcumferent ia l  - shear ing constraint .  .- . . - 
If the res t ra in t  on circumferent ia l  displacements  at  the two c i rcu lar  edges i s  
re leased,  the boundary conditions vn = 0 in (18)  should be replaced by 
Nsen  = 0, at  x = 0, L. F r o m  (11) and (12),  these  conditions can be wri t ten 

t vn = 0, a t  x = 0, L 
dvn 
dx 
- 
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The following expansion will satisfy these conditions: 

m T T ~  
M2 1 bm cos -1 L 

m =  1 

- 
vn - 

The calculation can be simplified by using a new variable 
t ransforming (17) accordingly. 

Vn = eXvn, and 

F r e e  edges. - F o r  a t runcated conical shell  with both edges f r ee ,  the 
boundary conditions a re ,  a t  x = 0, L, 

It is natural  that  these  mode functions should be expanded into sine s e r i e s  and 
(14) should be employed to  solve the problem. Since, a s  mentioned before, 
the sys tem of governing differential  equations i s  of tenth order ,  no boundary 
conditions need be imposed on the other  th ree  var iables ,  namely, Nen, Men, 
and Qen. These three  functions a s sume  the role of p a r a m e t e r s  in the prob-  
l e m  and can be expanded ei ther  int.0 sine s e r i e s  o r  cosine se r i e s .  However, 
an examination of the opera tors  in  Appendix I indicates that the f i r s t  de-  
rivatives of these functions a r e  involved, hence the i r  s e r i e s  expansions must  
be te rmwise  differentiable to  ensu re  convergence of the Galerkin procedure.  
Since, in general ,  Nen, Men, Qen and their  derivatives do not vanish at  the 
boundary, the i r  cosine expansions represent  even periodical functions, which 
a r e  continuous for  all values of x 
t ives) ,  while the i r  sine expansions represent  odd periodical functions with 
discontinuities at  x = 0, L, Z L ,  e tc .  Therefore ,  the cosine expansion i s  p r e -  
ferable  to the sine expansion, for  the f o r m e r  sat isf ies  a s e t  of sufficient con- 
ditions (Ref. 20 )  which ensu res  t e rmwise  differentiability, while the l a t t e r  
does not. Besides,  fo r  functions having nonzero value a t  x = 0, L, the cosine 
s e r i e s  expansions converge m o r e  rapidly than the sine expansions. 

JIJ 

(with piecewise continuous f i r s t  der iva-  

Now substituting the five sine s e r i e s  and the three  cosine s e r i e s  into 
(14) and applying the Galerkin procedure,  we can readily obtain the coeffi- 
cient ma t r ix  for  f r ee - f r ee  conical shells,  s imi l a r  to  (17). However, the s ize  
of the result ing ma t r ix  is considerably l a r g e r  than in  the four previous 
cases .  

T r a n s v e r s e  Shear  Theory  f o r  Short  Shells 

A physical reason  fo r  the derivation of the following theory can be 
drawn f rom the fact  concluded by many p r i o r  works ( e .  g . ,  Refs.  8, 14) 
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that  while the effects of rotatory iner t ia  a r e  i n  general  negligibly small ,  the 
effects of t r ansve r se  shear  deformation m a y  not be neglected for  relatively 
sho r t  shells.  It will be postulated that in  the vibrations of shor t  conical 
shells,  only the t r ansve r se  shea r  deformation in  the s - z plane i s  needed 
for  significant correct ion provided that the circumferent ia l  wave number 
i s  not very  large.  

n 

It is a well known fact that, when the effects of t r a n s v e r s e  shea r  and 
rotatory iner t ia  in the foregoing theory a r e  neglected, the o r d e r  of the sys tem 
of governing differential  equations (4)  and (5)  reduces f r o m  ten  to  eight. In  
this section, it will be shown that the neglect of t r a n s v e r s e  shear  deformation 
in the circumferent ia l  direction alone will resu l t  i n  th i s  reduction of o r d e r .  
In the following derivation, the c i rcumferent ia l  rotatory iner t ia  t e r m  
a2Pen/at2 i s  a lso neglected for  simplicity.  However, i t  is easy  to  see  that 
the retention of this  t e r m  does not affect the o r d e r  of the differential equations. 
The above discussion can be eas i ly  generalized to  a r b i t r a r y  shells of revolution. 

If the rotatory iner t ia  t e r m  in ( l e )  i s  neglected and the t r ansve r se  
shear  deformation in (2h) i s  s e t  to zero,  (4e )  and (5h) 
respectively, by 

s s in  a 
t Qon = a + s  

anwn 

Substitution of (4e ' )  into (4b, c )  and (5h') into (5d, e, 

ds S s s in  a s tan a \ d s  ds 

should be replaced, 

f )  gives 

s s in  a 

(4b' 1 

- 2  - -s2 wn 
2Msen 

s s in  a 
t + e a ( %  S s s in  a S 

(4c ' )  

aNen 
s tan  a 

- 

2 2  a n w  n 
d s  s 2  sin2 a S 
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2 2 dwn 2a nwn 

2 s s in  a ds  ,2 sin a s sin a 
a n  t + 1 - v  

2 2  
dpsn apsn 

t va -t- 
a n wn 

Men = s 2  sin2 a ds S 

It i s  seen that the derivative dpen/ds i s  eliminated f r o m  the system, and 
that the th ree  der ivat ives  dNsen/ds ,  dMsen/ds and dQSn/ds can be 
combined into two by introducing two new variables ,  
cos wt and Vs = (D/a2 )  Vsn s in(n0  t 0,) cos a t ,  defined by* 

Hs = CHsn cos (no t 0,) 

o r ,  a f t e r  using the assumption ( 3 ) ,  

Msen 
Hsn = Nsen E a  s t an  a 

Therefore ,  the sys tem (4a, b ' ,  c ' ,  d )  and (5a, b, c,  d ' ,  e ' ,  f ' ,  g )  i s  de-  
generated f r o m  tenth to eighth o rde r ,  and requi res  only four boundary condi- 
tions a t  each edge. Following the same  s teps  a s  in deriving (13), a ma t r ix  
equation of the displacement vector U+ = { un vn wn psn} can be obtained: 

(22)  
H*U* = 2 U:k 

*These two var iables  have been used i n  Ref. 10 and, in  a m o r e  general  
fo rm,  in  Refs. 11, 12. In the case  of a plate (e i ther  a -  9 0 ° ,  c i rcu lar ,  o r  
a -  0, . s  sin a = a- 03, rectangular) ,  Eq. ( 2 0 )  becomes t r iv ia l  while (21) 
has  been discussed by Kirchhoff, s e e  Ref. 21. 



where H* i s  a (4  X 4) operator  mat r ix .  The elements  of H:g a r e  given in 
Appendix 11. 

Equation ( 2 2 )  can be used in  place of (1.3) fo r  conical shel ls  with both 
edges clamped o r  s imply supported. The remaining s teps  a r e  the same  a s  
descr ibed before except that the boundary conditions on Pen o r  Msen a r e  
now discarded. 
N:: = {Nsn Hsn Nen Msn Msen Men Vsn} can a l so  be obtained, but will not be 
conside r ed  he r e .  

A s imi l a r  ma t r ix  equation of the s t r e s s  column vector 

Bending Theory 

As mentioned before, the system of differential  equations (1 )  and ( 2 )  
reduces to that of the c lass ica l  bending theory of thin shel ls  i f  the effects of 
t r ansve r se  shea r  and rotatory iner t ia  a r e  neglected. This  can be achieved by 
neglecting the right-hand-side t e r m s  of ( Id ,  e )  and setting to zero  the quan- 
t i t i es  in  (Zg, h)  that represent  the t r a n s v e r s e  shea r  deformation. Thus,  in  
addition to replacing (4e)  by (4e ' ) ,  (5h) by (5h') ,  (4d) and ( 5 g )  should a l so  
be replaced respectively by 

dwn 
- a -  - 

Psn - ds  

After  elimination of Q's  and p's by using (4d' ,  e ' )  and (5g ' ,  h ' ) ,  and in t ro-  
duction of the coordinate t ransformat ion  
( la ,  b, c )  can be wri t ten in  ma t r ix  form:  

(6 ) ,  and the three  equations of motion 

where F and a r e  ( 3  X 3 )  operator  ma t r i ces ,  

s in  a ( D -  1)  n sin a 

cos a 

0 s in  a (8'- 2 )  

0 0 

- 
F = ex 

2 0  



( 2 5 )  

0 0 0 

0 sin a cos a ( D - 2 )  - n cos a 

2 sin2 a (-.D~ +AS)  - 2n s in  a (D- 1) - sin2 a D+ n 

N 

F = ~e 

and the s t r e s s - s t r a i n  relations ( 2 a  - f )  become 

where 

I - un u cos a sin a (-Dt v )  

sin a (&+ 1 )  0 
1 - I t  -- 1 - u  n 

2 2 

cos a s in  a ( -  u.H+ 1)  - n  

o o sin2 a { -n 2 - ( I  - u ) n }  t v n  2 

N K = e 2 x l o  O 

It might be noted f r o m  ( 2 9 )  that the couple resul tants  M’s depend on t r a n s -  
ve r se  displacement wn only, a s  a consequence of the simplification made in  
the s t r e s s  - s t r a in  relations.  

Substitution of (26 )  and ( 2 7 )  into ( 2 3 )  gives a ma t r ix  equation for 
di s pl a c e ment s : 
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H 

M NN 

where H = F R  and H = FK a r e  ( 3  X 3) opera tor  m a t r i c e s  governing the 
membrane  and bending effects, respect ively 

=) sin a cos a ( v 3 t  1 )  I 1 - v  n - n s i n a ( + D +  I +  
2 

sin2 a (-D' t 1)  t - 
2 

3 -  1 - v  2) 2 - 2 s in2 a ( - D 2 t 1 ) t n 2  - n s i n a c o s  a 

2 - s i n  a cos a ( v D -  1 )  - n  cos a cos a 

(31) 

0 0 

2 2  
N H =  Ee 4 x [ :  0 n cos a ( s in2  a~ - n 

o o [ s in2  a ( f l + 2 1 2  - n 2 3 ( s in2  a a 2  - n 2 )  

It i s  seen  f r o m  ( 3 2 )  that  the fourth derivative of wn is involved in the bend- 
ing effects. Therefore ,  the Four i e r  expansion of wn must  be te rmwise  dif- 
ferentiable four t imes  to  ensure  convergence of the Galerkin procedure.  This  
requirement  limits the direct  application of Galerkin method to equation (30 ) .  
F o r  th i s  reason,  a calculation procedure based on equation ( 2 2 )  i s  r ecom-  
mended. 

Membrane Solutions 

It can be seen  f r o m  ( 2 5 )  and ( 2 9 )  that  the bending effects a r e  p r o -  
portional to (h  2 2  / a  ). Therefore ,  for  thin she l l s  we can neglect the second 
t e r m  of (23) o r  (30 )  to  find an approximate solution. Thus,  f rom (23), we 
have 

22  



which, combined with (26) ,  gives 

and 

where i s  given in  (31),  and 7 = EF i s  the (3  X 3) operator  mat r ix :  

Equation (34) 
discussed above, while (35) can be used to  find solutions for extensional vi-  
brat ions of f r ee - f r ee  conical shel ls ,  which will be given here  f o r  i l l u s t r a -  
tion. 

can be used for  clamped o r  simply supported edge conditions a s  

The boundary conditions for  f r ee  edges a r e  Nsn = NsOn = 0 ,  at 
x = 0, L, which a r e  sat isf ied by taking 

MI 
m r x  

= 2 am sin- N s n  L 
m =  1 

mnx 
Nson = 1 bm sin- L 

m =  1 
(37b) 
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mnx 
cm cos - NQn = - t  1 L 

m =  1 

M3 
c O  
2 

It might be r emarked  h e r e  that  the constant t e r m  in the cosine s e r i e s  must  be 
included to make the se t  of coordinate functions complete.  In fact ,  the con- 
stant co will be the dominating t e r m  in a specific mode to  be designated a s  
ring mode. Substitution of (37) into (36) and application of the Galerkin 
procedure give 
a ' s ,  b ' s  and C I S .  Thus, 

( M i  t M2 t M3 t 1) a lgebraic  equations for  the coefficients, [;:I C O  2 = a  [;:I c 

. o  

-i j where [Jkm],  
by the following formulas  

i, j = 1, 2, 3, a r e  parti t ion m a t r i c e s  whose elements  a r e  given 

Ti:= (y )  sin 2 a P k m t ( v n  2 t v - s i n  2 a ) Q k m  

-21 1 - v m r  
Jkm = - 2 sin a [(T) Qkm - .km] 

M1 1 m = l -  

m = l -  M1 

M3 J m =  0 -  
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dx knx . m r x  sin - 
L L 

- _  2L 2] (k t m )  rr - 11 2L 

= [ 4 L 2 + ( k - m ) 2 n 2  4 L 2 + ( k + m )  n 

k rx  m T T ~  
cos - dx L e sin- 

0 

[ e 2 L c o s ( k + m ) r r -  11 

m a 1  

1 (k-m).rr  + ~ ( k t m ) n  = - [  4L2 + (k - m ) 2  r2 4L2 + (k + m)' r2 

m T T ~  dx k rx  cos __ 
Rkm L L 

t 2L 2]  [ e 2 L c o s ( k + m ) r - l ]  2L 
= [ 4 L 2 t ( k - m ) ' r 2  4 L 2 + ( k t m )  rr 

k rx  krr 
[ e2L cos (krr) - 11 2 2  dx = - 

0 L 4L2+k rr 
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L 

2 L  - [ e 2 L  cos k r - l ]  k TTX 

L O  L 4L2 t k TF 2 2  
RkO = I e2x C O S  - dx = 

NUMERICAL RESULTS AND DISCUSSION 

-i j 
Jkm It i s  seen  that the coefficients depend on four pa rame te r s ,  

namely, the Poisson ' s  ra t io  v ,  the semiver tex  angle a ,  the completeness 
pa rame te r  s2 / s1 ,  and the c i rcumferent ia l  wave number n. Poisson ' s  ra t io  
i s  taken a s  0. 3. F o r  a s e t  of assigned values  of the other  th ree  pa rame te r s  
and properly chosen integers  MI,  M2, M3, the formulas  (39) give numer -  
ica l  values for the coefficient ma t r ix  of (38).  As an  example, we se t  a = 30°, 
s 2 / s 1  = 2. 0, n = 1, M1 = M2 = 3, and M3 = 5, then the formulas  (39) gen- 
e ra t e  a (12 X 12) mat r ix .  The eigenvalues and associated eigenvectors were  
calculated by a Jacobi -like method:: 
Eberlein (Ref. 2 2 ) .  The result ing frequencies  and eigenvectors a r e  given in  
Table 1, l is ted in the same  o r d e r  a s  they appear  in  the output diagonal matr ix .  
It i s  seen that the eigenvalues appear in an  interest ing arrangement  and may be 
classified into th ree  groups.  The f i r s t  t h ree  modes may  be t e r m e d  a s  "longi- 
tudinal modes" in  which a l ,  a2, and a3 predominate in turn,  thus the v ibra-  
tions a r e  mainly associated with the meridional  s t r e s s  N,. The fourth, fifth 
and sixth modes may be called "shear  modes" ( o r  r a the r  "torsi'onal modes" 
for  n = 0, the ax isymmetr ic  case) .  The remaining modes in  which N p r e -  
dominates a r e  mainly associated with the t r a n s v e r s e  motion and may be 
t e rmed  a s  " t ransverse  modes.  I '  F r o m  Table 1, it i s  a s  expected that the 
cosine s e r i e s  (37c) converges slower than the two sine s e r i e s  (37a, b )  and 
requi res  six t e r m s  t o  make the f i r s t  two t r a n s v e r s e  modes 
have sat isfactory accuracy.  
arrangement  and automatic classification of the th ree  types of modes appear 
only for a cer ta in  range of the p a r a m e t e r s  a ,  s2 / s1 ,  and n, in  which the 
coupling effects a r e  weak. I t  should also be mentioned that, although twelve 
modes were  obtained f rom the solution, only the f i r s t  longitudinal mode, No. 1, 
the f i r s t  shear  mode, No. 4, and the f i r s t  two t ra .nsverse modes,  Nos.  7, 
8, 
because they appear  a s  
which means  (Ref. 22 )  the eleventh and twelfth eigenvalues a r e  conjugate 

of diagonalizing m a t r i c e s  developed by 

e 

(Nos.  7 and 8 )  
It should be r emarked  he re  that the special  

have good accuracy.  The l a s t  two eigenvalues were  not shown in  Table 1 
( 2  X 2 )  diagonal block in the output diagonal matr ix ,  

~ ~ . .  

:::The subrouting p rogram used in  the calculations is based on one prepared  
by Eberlein,  Computing Center,  University of Rochester,  N. Y. F o r  details  
of the method, see Ref. 22. 
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TABLE 1. NATURAL FREQUENCIES AND FOURIER COEFFICIENTS O F  MODE 
FUNCTIONS, Nsn, N,en, Nen, O F  FREE-FREE CONICAL SHELLS 

WITH a = 30° ,  s 2 / s 1  = 2.0 ,  n = 1 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

3 . 0 8 4  

6 . 9 0 3  

10.279 

2 . 7 7 4  

4 . 3 0 8  

5.937 

1 . 5 8 5  

0 .850  

1 . 2 2 1  

1.111 

a l  a 2  a3 

, 9 0 4  .050  - . 0 1 5  

- .267 . 7 2 1  .146 

. 0 7 7  - .396 . 9 0 3  

. 1 7 5  .080  . 0 1 5  

.499 . 0 4 6  . 0 9 1  

. 2 8 9  - . 9 2 3  - . 1 7 7  

m.137 - .026  - . 0 1 3  

-.141 - . 0 5 4  - . 0 3 5  

.O36 - . 1 2 7  . 0 4 5  

. 0 7 9  - . 0 6 4  - . 0 4 2  

b l  b 2  b 3  

. 0 2 3  - . 1 9 5  - . 0 2 9  

.O21 - . 2 2 3  . 4 6 4  

.O13 - . 0 2 4  - . 0 2 7  

. 3 7 1  . 1 1 7  - . 0 1 2  

- . 2 9 0  . 6 6 3  . 2 1 7  

. l o 1  - . 2 1 5  . 5 0 7  

- . 2 2 8  - . 0 3 2  , 0 1 3  

. 2 4 4  . 1 2 9  , 0 7 8  

- . 2 5 4  . 2 5 8  - . 0 6 1  

- . 2 5 4  . 0 8 5  . 0 9 8  

_ _ _ _ _ ~ ~ ~  ~~~~ ~ 

1 . 2 7 1  . 2 7 8  -.o80 . i 3 0  . a 2 0  . 0 2 5  

- . 2 3 8  . 4 4 5  . 5 9 1  . 5 9 7  . l o 2  . 0 6 8  

. 2 8 3  - .684 1 . 0 4 8  - . 2 9 4  . O O O  . 0 3 6  

. 1 9 5  - . 5 5 3  .207  . 694  .118 .070 



complex numbers  as a resu l t  of the se r i e s  truncation. 
putation experience that,  i f  unequal integers  a r e  assigned to  M1, M2, and 
M3, 

It  i s  found f r o m  com- 

the re  will be a danger of obtaining complex eigenvalues. 

Since the bending rigidity has  negligibly sma l l  effects on lower modes 
of axisymmetr ic  vibrations of f r e e  - f ree  conical shel ls ,  we will investigate 
this case  in  detail by applying equation (38).  F r o m  (36) it i s  seen that, 
when n = 0, we have 

Therefore ,  the second equation of (35) i s  uncoupled f r o m  the other two; that  
i s ,  the tors ional  modes a r e  completely independent f r o m  the coupled longi- 
tudinal and t r ansve r se  modes.  F r o m  (39) we can see  that the tors ional  
modes a r e  given by the submatr ix  [3km]. 
nontorsional ax isymmetr ic  vibrations of f r e e  - f ree  conical shells,  we se t  
I, = 0.3, n = 0, M1 = M3 = 5, and M2 = 0 i'n formulas  (39). The frequency 
now depends on a and s Z / s 1  only. 

-22 Since we a r e  now interested in the 

To  investigate the dependence of frequency on a ,  we fix s2 / s1  = 2 .  0, 
and take a s e r i e s  of values for  a ,  ( a  = 3 " ,  5" ,  l o " ,  15" ,  20", 30°,  45", 60° ,  
75", and 85"),  then calculate the frequencies f r o m  the (11 X 11) ma t r i ces .  
The resu l t s  a r e  plotted in  F igure  3. It was found that, f o r  a >15", the f r e -  
quencies appear a s  two groups i n  the output diagonal ma t r i ces ,  and the f r e -  
quencies of longitudinal modes a r e  always higher than those of t r ansve r se  
modes.  But for  a < 15", the frequencies of the two groups become in t e r -  
spersed,  and no pronounced t r ansve r se  modes exis t .  This  phenomenon will 
be r e fe r r ed  to  a s  "strong coupling. 
pa rame te r  s2 / s1 ,  different curves  s imi l a r  t o  F igure  3 will be obtained. 
Figure 4 represents  the case  of s 2 / s 1  = 4. 0, in which strong coupling occurs  
in  the region 

F o r  different values of the completeness 

0 < a < 45".  

It might be noted f r o m  F igures  3 and 4 that, while the frequency 

This  
spec t r a  of longitudinal modes extend to  infinity, the frequencies of higher 
t r ansve r se  modes a r e  spaced in a finite interval,  the shaded region. 
resul t  i s ,  a s  expected, the limiting case when the shel l  thickness tends to  
zero.  F o r  r e a l  shel ls  with even smal l  thickness,  the frequencies of higher 
t r ansve r se  modes in the shaded a r e a  and of all t r a n s v e r s e  .modes in some 
neighborhood of a = 90" 
bending rigidity. 

a r e  expected to  be inc reased  considerably by the 

Another interest ing resul t  f rom the above calculations i s  that the f r e -  
quency associated with the constant t e r m  co  of the cosine s e r i e s  (37c) tends 
to  a finite value a s  a 90". This  par t icu lar  type of vibration may  be called 
a "ring mode" since the en t i re  shell  vibrates  without a nodal circle.  The 
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different types of modes a r e  labeled in  F igu res  3 and 4 by L for longi- 
tudinal, T for t r ansve r se ,  and R for  ring modes.  

The dependence of the frequency on the completeness pa rame te r  
s 2 / s 1  was investigated i n  a s imi l a r  manner .  Setting a = 15" and taken 
successively s 2 / s 1  = 1. 1, 1. 25, 1. 75, 2. 0, 2 .  25, 2.  5, 3 .  0, 4. 0, and 5. 0, 
we calculate frequencies f r o m  the (11 X 11) ma t r i ces .  The resu l t s  a r e  
plotted in  Figure 5. 
for  s z / s 1  < 2 and s t rong coupling for  s 2 / s 1  > 2. It is seen that the f r e -  
quencies have a ve ry  interest ing and pronounced steplike variation with 
typical of this  type of problem. 
drawn f r o m  Figure 5 i s  that, for  a = 15", the lowest frequency i s  near ly  
independent of the completeness o'f the conical shell .  

I 

It is found that the two types of modes have weak coupling 

s2 /s1 ,  
Another interest ing conclusion which may  be 

F r o m  the above numerical  analysis,  F igure  6 was contrived and sum-  
m a r i z e s  graphically the influence of the meridional  s t r e s s  resultant 
the t r ansve r se  modes of axisymmetr ic  vibrations of f r ee  - f ree  conical shel ls .  
While strong coupling will always exist  for conical shells in  the upper-left  
region in Figure 6, the lower-r ight  region includes shel ls  with weak coupling 
effects  which ensure  the existence of pronounced t r ansve r se  modes.  
coupling e f fec ts  can be m o r e  easi ly  seen f r o m  the mode functions. 
typical truncated s e r i e s  representat ions of the mode functions a r e  shown in  
F igures  7 through 10. F igures  7 and 8 show the mode functions of she l l s  
in the weak coupling region. I t  i s  seen that,  in  t r a n s v e r s e  modes, Nsn i s  
smal l  compared to  Nen* F igures  9 and 10 show the mode functions of two 
shells belonging to  the s t rong coupling region. The modes can no longer be 
classified,  and Nsn and Nen a r e  of the same o r d e r  of magnitude. 

Ns on 

The 
Some 

CONCLUSIONS 

The ma t r ix  method presented in this  paper  provides a systematic  way 
of calculating natural  frequencies and mode functions of truncated conical 
shel ls  with the same  type of boundary condition a t  both edges.  It i s  not appli-  
cable to  mixed boundary value problems,  such a s  fixed-free conical shells,  
because of the same  difficulty as will be encountered in applying the Rayleigh- 
Ritz method, namely, the difficulty of choosing coordinate functions to  satisfy 
al l  boundary conditions. However, whenever applicable, i t  provides an effi- 
cient calculation procedure which p r e s e r v e s  the mathematical  charac te r i s t ics  
of the vibration problem a s  an eigenvalue problem. 

Finally, i t  may be r emarked  that the numer ica l  resu l t s  obtained in the 
present  work confirm the conclusion observed previously by many others ,  
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that  a one - o r  two - t e r m  Rayleigh-Ritz approximation cannot yield sat isfactory 
resu l t s  except for  slightly tapered, shor t  conical shel ls .  The calculations 
a l so  indicate that, in  most  ca ses ,  m o r e  than five t e r m s  a r e  needed to give a 
sat isfactory s e r i e s  representat ion of the mode functions. 
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A P P E N D I X  I 

The elements  of the operator  matrix H 

2 - n21 H l l  = e2x [-s in  2 a (S 2 - 1) + - 

~ 1 2  = - n s in  a e 
2 2 

H13 = sin a cos  a eZx (vB+ 1) 

2x H23 = - (1  + ks) n cos a e 

X H25 = - k, cos a e 

H31 = - s in  a cos a e2x (VD- 1) 

2x H32 = - n cos a e 

H33 = e 2x [ -ks sin2 a D 2  t ksn2 t cos2 a] 
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H35 = k,ne X 

H43 = - ( k s / E )  s i n a  ex.8 

n s in  a + (ks/E) 1 1 - v  

2 
- 1) + - 2 - sin a (D2 

H53 = ( k s / E )  n ex 

2x 
H54 = n s i n a  e 

2 2x ' 2x (B2 - 1) t n e + (ks/E) 
1 - v  

H55 = - - sin a e 
2 

The elements of the operator mat r ix  J 

J1' = J44 = - e2x sin2 a [B2 - v n  - ( 1  - v)] 

2x J12 = J45 = - n sin a e [ ( 1 t v ) p t  ( 1  - 3 v ) l  

J13 = eZx [ -s in2 a (at 1) + (1  t n2)]  
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J17 = Y E  s i n a  c o s  a eZx (D- 1) 

2x 518 = 2 v  E n c o s  a e 

l - v  

2 
JZ1 = J54 = - n s in  a eZx (a - 1) 

l - v  2 2 2 
J Z 2  = J55 = - - eZx [ s in  a (a - 4) - n ] 

2 

l - v  

2 
J Z 3  = J56 = - n sin a eZx (a+ 3) 

J24 = J25  = J Z 6  = J27 = 0 

l - v  ZX JZ8 = - E sin a cos  a e (B t 2)  
2 

J31 = J64 = - sin2 a e 2 " [ v D 2  - at ( 1  - v ) ]  

ZX J3'= J65 = - n s i n a  e [ ( 1 + V )  3- ( 3  - v ) ]  

J33 = eZx [ - v sin2 a (a+ 1) t 1 t n2] 

J34 = J35 = J36 = 0 

J37 = E s in  a cos a e zx(a- 1) 

2x J38 = Z E  n cosa e 

J41 = J4' = J43 = 0 
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2 2 
J46 = e2x [ -sin a (fit 1) + v (sin a +n2)] 

J47 = - ex  sin a ( B -  v )  

J48 = - vneX 

J51 = J52 = J53 = 0 

1 - v  
2 

1 - v  
2 

J57 = - n ex 

sin a ex ( & +  1) J58 = - - 

J61 = J 62 = J63 = 0 

J73 = - ( k , / E )  sin a cos a eZx ( B t  1) 

J74 = ( k s / E )  s in a ex (a- 1) 

J75 = ( k , / E )  n ex 

J76 = (ks/E) sin a ex 

42 



J77 = - k, s in  a e 2x (a2 - 1) + (ks/E) 

J78 = - ksn s in  a eZx (a+ I )  

J81 = J82 = 0 

J83 = (k&) n cos a 

J84 = 0 

J85 = (k&) sin a ex (0- 2) 

J86 = - (ks/E) nex 

J87 = ksn s i n a  eZx (.8- 1) 

J88 = ksn2eZx + (kS/E)  
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APPENDIX I1 

21 2x  1 -  v 2 - n cos a e  + E n cos a e 23 - H :: - 

3x [I; V a -  -1 3 - v  
H::24 = E n s in  a cos a e 

2 

H::: 33 2x  2 = e [ -ks s in2 aB2 + COS a ]  

2 3 x  [ - 1 ; v n -  3 - V I  H::: 34 = ks sin a ex (3- 1) - e n  s in  a e 
2 

= - ( k s / E )  s i n a  e X B  + n 2 sin a e 3x [ " " s ; 2 ]  
2 
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